Abstract

The existing method to survey site pollution is generally based on soil-groundwater sampling and instrumental analysis, which enables us to access the detailed soil pollution status while lacking quantitative association with industrial activities. It is urgent to understand contaminant discharge modes and establish a discharge inventory for achieving process-targeted pollution control. This study took a 40-year phosphate fertilizer-sulfuric acid site as an example and constructed a contaminant tracing method based on on-site investigations and detailed industrial data. These investigations and data were combined to determine the characteristic pollutant of this site, arsenic. And the calculation process of four-pathway pollution modes (atmospheric deposition, wastewater, solid waste leaching, and storage dripping) is derived from the existing acceptance criteria and risk assessment guidelines. They are set to calculate the arsenic's factory-to-soil discharge flux. The absent process contaminant release information and parameters, such as discharge coefficient, were obtained from soil-groundwater pollution control standards and discharge handbooks. It was found that the high concentration of arsenic (around 1930 mg g−1) was preponderantly caused by sulfur-iron slag and tailing leaching (96.19%), while the other pathways accounted for only 0.13% (atmospheric deposition), 3.59% (wastewater) and 0.09% (storage tank). Results were verified by the measured arsenic concentration, and the difference was +16.29%, which was acceptable. Finally, a contaminant discharge inventory was established with high-resolution spatial distribution and time-scale (historical discharge) evolution. The innovation of this study lies in the preliminary construction of a method for formulating soil discharge inventory. This study would contribute to the refined management of site pollution and reduction of source contaminants discharge. In addition, it will help infer the pollution condition of sites that are difficult to sample so as to help the government achieve precise source control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.