Abstract

Oxygen is an important energy medium in the steelmaking process. The accurate dynamic prediction of oxygen demand is needed to guarantee molten steel quality, improve the production rhythm, and promote the collaborative optimization of production and energy. In this work, a analysis of the mechanism and of industrial big data was undertaken, and we found that the characteristic factors of Basic Oxygen Furnace (BOF) oxygen consumption were different in different modes, such as duplex dephosphorization, duplex decarbonization, and the traditional mode. Based on this, a dynamic-prediction modeling method for BOF oxygen demand considering mode classification is proposed. According to the characteristics of BOF production organization, a control module based on dynamic adaptions of the production plan was researched to realize the recalculation of the model predictions. A simulation test on industrial data revealed that the average relative error of the model in each BOF mode was less than 5% and the mean absolute error was about 450 m3. Moreover, an accurate 30-minute-in-advance prediction of dynamic oxygen demand was realized. This paper provides the method support and basis for the long-term demand planning of the static balance and the short-term real-time scheduling of the dynamic balance of oxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.