Abstract

ABSTRACTA method to accelerate and quantitate retrogradation of starch pastes using a freeze‐thaw cycle (FTC) process and turbidometric analysis has been developed. Using this method and differential scanning calorimetry (DSC), it was determined that the rate of retrogradation in 2.5% waxy maize pastes was inversely correlated to the rate of freezing, and that the thawing temperature affected perfection of the crystallites in retrograded amylopectin. DSC and X‐ray diffraction were used to determine whether the crystallites formed during the FTC process were the same as those formed in starch pastes held isothermally at 4°C. Analysis of retrogradation of pastes of starches from various botanical sources indicated that the method reflects retrogradation in higher concentration pastes. Retrogradation rates were reduced by the addition of sodium dodecyl sulfate. Microstructures of freeze‐thaw processed waxy maize and common corn starch pastes were examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.