Abstract

Abstract The request for optimization of development system parameters, well designs and the ground facility architecture is permanent task during the development of hydrocarbon fields. Decrease in the quality of oil and gas reserves, development of fields in difficult environment conditions and in the Arctic, oil and gas prices development lead to an increase in the sensitivity of new field’s development profitability from the parameters of the development system and field facilities. Infrastructure of a field for the development of a gas field is associated with significant capital costs, both for the construction of wells and local infrastructure facilities, and for the construction of facilities for the preparation and transportation of gas. Therefore, one of the main tasks in the design of gas field development is the calculation of the optimal parameters of the development system - the number of wells and gas production plateau. Now the most well-known approaches to solving this problem are the calculation of different development variants using integrated numerical hydrodynamic models (Apasov et.al., 2018), taking into account all the features of the field under consideration or using analytical models based on the fundamental principles of filtration theory and development experience. In such conditions, when solving optimization problems, it is necessary to take into account all the components of the production system (Khasanov et.al., 2020), otherwise it can be an incorrectly assessment of the economic effect of optimization and face the unprofitability of the developed design solutions. For most oil fields, the interinfluence of the reservoir part of the field, well lifts and the infrastructure is relatively weak, therefore, these parts can be optimized separately. When designing the development of fields with oil rims and gas fields, especially multilayer ones, optimization requires searching for a global optimal solution, investigating the existence and uniqueness of such a solution - on the models describing the field and interaction of the infrastructure, well lifts and the reservior part.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call