Abstract

An important challenge to using fluorodeoxyglucose-positron emission tomography (FDG-PET) in clinical trials of brain tumor patients is to identify malignant regions whose metabolic activity shows significant changes between pretreatment and a posttreatment scans in the presence of high normal brain background metabolism. This paper describes a semiautomated processing and analysis pipeline that is able to detect such changes objectively with a given false detection rate. Image registration and voxelwise comparison of the pre- and posttreatment images were performed. A key step is adjustment of the observed difference by the estimated background change at each voxel, thereby overcoming the confounding effect of spatially heterogeneous metabolic activity in the brain. Components of the proposed method were validated via phantom experiments and computer simulations. It achieves a false response volume accuracy of 0.4% at a significance threshold of 3 standard deviations. It is shown that the proposed methodology can detect lesion response with 100% accuracy with a tumor-to-background-ratio as low as 1.5, and it is not affected by the background brain glucose metabolism change. We also applied the method to FDG-PET patient images from a clinical trial to assess treatment effects of lapatinib, which demonstrated significant changes in metabolism corresponding to tumor regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.