Abstract

Census counts of benthic foraminifera were studied from the SW Iberian Margin to reconstruct past changes in deep-water hydrography across Terminations I and II. Detailed benthic faunal data (> 125 μm size-fraction) allow us to evaluate the limitations imposed by taphonomic processes and restricted size-fractions. The comparison of recent (mudline) and fossil assemblages at IODP Site U1385 indicates the quick post-mortem disintegration of shells of astrorhizoid taxa (~ 80% of the present-day fauna), resulting in impoverished fossil assemblages. While the application of quantitative proxy methods is problematic under these circumstances, the fossil assemblages can still provide a qualitative palaeoenvironmental signal that, while most fully expressed in the 125–212 μm size-fraction, is nonetheless also expressed to some degree in the > 212 μm size-fraction.Variations in the benthic foraminiferal assemblages reveal information about changing organic matter supply, deep-water oxygenation and temperature. MIS 2 is generally characterized by an elevated trophic state and variable oxic conditions, with oxygenation minima culminating in the Younger Dryas (YD) and Heinrich Stadials (HS) 1, 2 and 3. Low oxic conditions coincide with decreased water-temperature and lower benthic δ13C, pointing to the strong influence of a southern sourced water-mass during these periods. HS 1 is the most extreme of these intervals, providing further evidence for a severe temporary reduction or even shutdown of AMOC. With the inception of MIS 1, organic matter supply reduced and a better ventilated deep-water environment bathed by NEADW is established.For Termination II, clear indications of southern-sourced water are limited to the early phase of HS 11. During the latter part of HS 11, the deep-water environment seems to be determined by strongly increased supply of organic matter, potentially explaining the decoupling of benthic δ13C and Mg/Ca records of earlier studies as a phytodetritus effect on the carbon isotope signal. However, the presence of a warm, nutrient-rich and poorly oxygenated water-mass cannot be ruled out. With the inception of interglacial MIS 5e trophic conditions are reduced and ventilation by NEADW increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.