Abstract
Schizophrenia is a chronic and severe mental disorder that affects individuals in various ways, particularly in their ability to perceive, process, and respond to stimuli. This condition has a significant impact on a considerable number of individuals. Consequently, the study, analysis, and characterization of this pathology are of paramount importance. Electroencephalography (EEG) is frequently utilized in the diagnostic assessment of various brain disorders due to its non-intrusiveness, excellent resolution and ease of placement. However, the manual analysis of electroencephalogram (EEG) recordings can be a complex and time-consuming task for healthcare professionals. Therefore, the automated analysis of EEG recordings can help alleviate the burden on doctors and provide valuable insights to support clinical diagnosis. Many studies are working along these lines. In this research paper, the authors propose a machine learning (ML) method based on the eXtreme Gradient Boosting (XGB) algorithm for analyzing EEG signals. The study compares the performance of the proposed XGB-based approach with four other supervised ML systems. According to the results, the proposed XGB-based method demonstrates superior performance, with an AUC value of 0.94 and an accuracy value of 0.94, surpassing the other compared methods. The implemented system exhibits high accuracy and robustness in accurately classifying schizophrenia patients based on EEG recordings. This method holds the potential to be implemented as a valuable complementary tool for clinical use in hospitals, supporting clinicians in their clinical diagnosis of schizophrenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.