Abstract
Continuous liquid interface production (CLIP) utilizes projection ultraviolet (UV) light and oxygen inhibition to transform the sequential layered three-dimensional (3D) manufacturing into a continuous fabrication flow with tremendous improved fabrication speed and structure integrity. Incorporating ceramic particles to the photo-curable polymers allows for additive manufacturing of ceramic parts featuring sophisticated geometries, mitigating the difficulties associated with traditional manufacturing processes. The presence of ceramic particles within the ink, however, strongly scatters the incident UV light. In the high-resolution CLIP (microCLIP) process, the scattering effect can significantly alter the process characteristics, resulting in broadening of lateral feature dimensions alongside curing depth reduction. Varying exposure conditions to accommodate scattering additionally affects the oxygen deadzone thickness (DZ), which is dependent on power of incident light. This introduces a systematic defocusing error for large deadzone thickness to further complicate process control, such as the unwanted narrowing of part features. In this work, we developed a systematic framework for process optimization by balancing those effects via experimental characterization. We showed that the reported method can provide a set of optimal process parameters (UV power and stage speed) for high-resolution 3D fabrication in accommodating the distinct characteristics of given photo-curable ceramic ink. The method to optimize process parameter was validated experimentally via fabricating a gradient index Luneburg lens comprising densely packed woodpile building-blocks with a strut width of 100 μm and a layer thickness of 60 μm using microCLIP at dimensionally accurate exposure conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.