Abstract

A nuclear magnetic resonance (NMR) method of probing the dielectric response to an alternating electric field is described, which is applicable to noncentrosymmetric sites with nuclear spin I>1/2. A radio-frequency electric field induces a linear quadrupole Stark effect at a multiple of the nuclear Larmor frequency. This perturbation is applied in the windows of an NMR multiple-pulse line-narrowing sequence in such a way that the resulting nonsecular spin interactions are observed as first-order quadrupole satellites, free of line broadening by the usual dominant static interactions. A simulation of the Ga69 spectrum for the nuclei within the two-dimensional electron gas of a 10 nm quantum well predicts resolution of individual atomic layers in single devices due to the spatial dependence of the polarization response of the quantum-confined carriers to the applied field. This method is part of a more general strategy, perturbations observed with enhanced resolution NMR. Experimentally realized examples in GaAs include spectrally resolving electron probability densities surrounding optically relevant point defects and probing the changes in radial electric field associated with the light-on and light-off states of these shallow traps. Adequate sensitivity for such experiments in individual epitaxial structures is achieved by optical nuclear polarization followed by time-domain NMR observed via nuclear Larmor-beat detection of luminescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.