Abstract

Water inrush from coal-seam floors greatly threatens mining safety in North China and is a complex process controlled by multiple factors. This study presents a mathematical assessment system for coal-floor water-inrush risk based on the variable-weight model (VWM) and unascertained measure theory (UMT). In contrast to the traditional constant-weight model (CWM), which assigns a fixed weight to each factor, the VWM varies with the factor-state value. The UMT employs the confidence principle, which is more effective in ordered partition problems than the maximum membership principle adopted in the former mathematical theory. The method is applied to the Datang Tashan Coal Mine in North China. First, eight main controlling factors are selected to construct the comprehensive evaluation index system. Subsequently, an incentive-penalty variable-weight model is built to calculate the variable weights of each factor. Then, the VWM-UMT model is established using the quantitative risk-grade divide of each factor according to the UMT. On this basis, the risk of coal-floor water inrush in Tashan Mine No. 8 is divided into five grades. For comparison, the CWM is also adopted for the risk assessment, and a differences distribution map is obtained between the two methods. Finally, the verification of water-inrush points indicates that the VWM-UMT model is powerful and more feasible and reasonable. The model has great potential and practical significance in future engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.