Abstract

We developed a highly sensitive and specific high-performance liquid chromatography tandem mass spectrometry method with an electrospray ionization for the determination of D- and L-isomers of leucine in human plasma. Phosphate-buffered saline was used as the surrogate matrix for preparation of calibration curves and quality control samples. The extraction of D- and L-leucine in plasma samples (100μL) was performed using cationic exchange solid-phase extraction. The enantiomer separation of D- and L-leucine was successfully achieved without derivatization using a CHIRALPAK ZWIX(-) with an isocratic mobile phase comprised of methanol/acetonitrile/1mol/L ammonium formate/formic acid (500:500:25:2, v/v/v/v) at a flow rate of 0.5mL/min. In addition, the discrimination of DL-leucine from structural isomers DL-isoleucine and DL-allo-isoleucine was performed using the unique precursor and product ion pair transition of DL-leucine (m/z 132.1 > 43.0) and DL-leucine-d 7 (m/z 139.2 > 93.0) in positive electrospray ionization mode. The standard curves were linear throughout the calibration range from 0.001 to 1μg/mL for D-leucine and from 1 to 1000μg/mL for L-leucine, respectively, with acceptable intra- and inter-day precision and accuracy. The stability of D- and L-leucine in human plasma and solvents was confirmed. The endogenous level of D- and L-leucine in human plasma was 0.00197~0.00591 and 9.63~24.7μg/mL, respectively. This method was also successfully applied to investigate the species difference in the ratios of D-leucine to total leucine from individual plasma concentrations in humans and various animals. The plasma D-leucine concentrations or their ratio to total leucine in rodents was much higher than that in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.