Abstract

Ionophore antimicrobials are heavily used in the livestock industries, both for preventing animal infection by coccidia protozoa and for increasing feed efficiency. Ionophores are excreted mostly unmetabolized and are released into the environment when manure is land-applied to fertilize croplands. Here, an analytical method was optimized to study the occurrences of five ionophore residues (monensin, lasalocid, maduramycin, salinomycin, and narasin) in dairy manure after solid-liquid separation and further treatment of the liquid manure by a membrane-based treatment system. Ionophore residues from the separated solid manure (dewatered manure) and suspended solids of manure slurry samples were extracted using ultrasonication with methanol, followed by sample clean-up using solid phase extraction (SPE) and subsequent analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The use of an ethyl acetate and methanol (1:1 v:v) mixture as an SPE eluent resulted in higher recoveries and lower method quantitation limits (MQL), when compared to using methanol. Overall recoveries from separated solid manure ranged from 73 to 134%. Liquid manure fractions were diluted with Nanopure™ water and cleaned up using SPE, where recoveries ranged from 51 to 100%. The developed extraction and LC-MS/MS methods were applied to analyze dairy manure samples subjected to an advanced manure treatment process involving a membrane-based filtration step (reverse osmosis). Monensin and lasalocid were detected at higher concentrations in the suspended solid fractions (4.40–420 ng/g for lasalocid and 85–1950 ng/g for monensin) compared to the liquid fractions (<MQL – 132 ng/mL for monensin). Monensin residues remained in liquid manure treated with reverse osmosis where residual concentrations were reduced to near 8 ng/mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.