Abstract
A forensic identification method based on the chemical fingerprinting of the first generation of biodiesel (fatty acid alkyl esters as effective components), and several corresponding diagnostic ratios was developed and validated. The distribution of major fatty acid methyl esters (FAMEs) and polar compounds (free fatty acids, glycerol, monoacylglycerides, and free sterols) in several representative above biodiesel products commercially available in Canada were positively quantified and compared, a number of cross-plots of diagnostic ratios of target FAMEs and sterols were developed for biofuel correlation and differentiation. It was found that the cross-plots of FAME ratios, for example, the sum of the di-unsaturated relative to saturated homologues of FAMEs (D/S) versus the sum of the mono-saturated to saturated FAMEs (M/S), and the sum of di-unsaturated to mono-saturated FAMEs (D/M) versus the sum of the mono-saturated to saturated FAMEs (M/S), could cluster samples clearly into their individual feedstock. The cross-plots of diagnostic ratios of individual major sterols (cholesterol, brassicasterol, campesterol, β-stiosterol and stigmasterol) to the total sterols were also developed and proved to be effective in identifying biodiesel sources due to their self-normalizing effect on sterol data. The case study of a mystery biodiesel spill using this method showed that the two real samples can be tightly clustered into biodiesel from animal fat (Ban) group. However, the significant discrepancy of free fatty acids, glycerol, monoacylglycerides and sterol concentrations between the two real samples indicated their different producing batches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.