Abstract

Malodor pollution emitted from industrial park has become an important environmental issue. However, the difficulty in investigating malodor pollution is in determining the malodor source. The objective of this study was to develop a model for determining the malodor source and pollution in industrial park, via multiple time and site measurements of odor intensity and air pollutants, together with wind direction in different seasons, and the critical environmental factors could be also identified by correlating the odor intensities with meteorological conditions and the concentrations of air pollutants. A high-malodor-polluted industrial park involving metal and petrochemistry processing industries was selected as the study subject, and sampling was performed close to residential districts. Nine sites were selected as sampling points by a chessboard design, with each site measured for 5days in fall and spring, respectively. Odor intensity (ratings 0–5) and environmental factors, including meteorological condition, PM10, PM2.5, total volatile organic compounds (TVOCs), ammonia and reduced sulfides, were evaluated six times daily. The results indicated that the incidences of odor ratings 1–5 were 71.9% and 81.0% in two seasons in the sampling area, and an open ditch for collecting industrial wastewater for feeding to the wastewater treatment plant was identified as the main odor source. Multiple regression analysis showed that the odor rating significantly correlated with TVOC concentration and wind speed (P<0.05); odor intensity increased by 0.001 units on the rating scale for each 1ppb increase in TVOCs, and decreased by 0.154 units for each 1m/s increase in wind speed. This study developed a method to explore malodor pollution in industrial park, providing a novel thinking to understand and resolve malodor problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call