Abstract

The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate (ṀO2), therefore, should reliably and reproducibly estimate the highest possible ṀO2 by an individual or species under a given set of conditions (peak ṀO2). This study determined peak ṀO2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak ṀO2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak ṀO2 after feeding was not. Peak ṀO2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak ṀO2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak ṀO2 was not repeatable when compared across methods. Therefore, the peak ṀO2 estimated for a group of fish, as well as the ranking of individual ṀO2 within that group, depends on the method used to elevate aerobic metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.