Abstract

Directional hearing in noisy environments is enhanced using small conventional microphones. In one embodiment a conventional first order bidirectional gradient microphone is employed in connection with a barrier to produce sound shadow at the rearward end of the microphone. In other embodiments such as hearing assistive devices worn on a person's head or body, the head or body of that person serves as the barrier. The result is a significant reduction in gain for all frequencies of acoustic energy emanating from generally rearward of the microphone. The sound shadow creates an apparent change of direction of arrival for rearwardly arriving acoustic energy, thereby making it appear to the microphone that the sound is approaching from the high attenuation 90° direction. Two spaced bidirectional microphones worn on a person's body may be positioned to take advantage of this effect while simulating binaural hearing in an assistive listening device. A similar directional result is obtained with two conventional cardioid microphones mounted on a common casing to face in opposite directions. Electronic circuitry subtracts the output signal of the rearward facing microphone from the output signal of the forward facing microphone to render the combination highly directional. Case noise and other mechanical vibrations modulating the two output signals are nulled out in the subtraction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.