Abstract

Methionyl-tRNA synthetase from Escherichia coli contains one tightly bound zinc atom per subunit. The region encompassing residues 138 to 163 of this enzyme is responsible for the metal binding. A 28-mer peptide corresponding to these residues was expressed in vivo and shown to contain approximately 1 mol of tightly bound Zn/mol of peptide. In this study, the three-dimensional solution structure of this peptide was solved by means of two-dimensional proton NMR spectroscopy. A total of 133 nuclear Overhauser effect distance constraints and 22 dihedral angle restraints were used for the calculations, using a hybrid distance-geometry-simulated annealing strategy. Excluding the first four residues, the resulting structure is well-defined (r.m.s.d. 0·71 Å for backbone atoms) and composed of a series of four tight turns. The second and the fourth turns are composed of CXXC sequences which are structurally homologous to the NH-S tuns found in the metal binding sites of gag retroviral proteins and rubredoxin. The solution structure of the zinc binding peptide shows significant discrepancies with the crystal structure of methionyl-tRNA synthetase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.