Abstract

Amyloid β-peptide (Aβ), the central constituent of senile plaques in Alzheimer’s disease (AD) brain, has been shown to be a source of free radical oxidative stress that may lead to neurodegeneration. In the current study Aβ(1-40), found in AD brain, and the amyloid fragment Aβ(25-35) were used in conjunction with electron paramagnetic resonance spin trapping techniques to demonstrate that these peptides mediate free radical production. The methionine residue in these peptides is believed to play an important role in their neurotoxicity. Substitution of methionine by structurally similar norleucine in both Aβ(1-40) and Aβ(25-35), and the substitution of methionine by valine, or the removal of the methionine in Aβ(25-35), abrogates free radical production and protein oxidation of and toxicity to hippocampal neurons. These results are discussed with relevance to the hypothesis that neurodegeneration in Alzheimer’s disease may be due in part to Aβ-associated free radical oxidative stress that involves methionine, and to the use of spin trapping methods to infer mechanistic information about Aβ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.