Abstract
Metal-catalysed oxidation (MCO) may play a causative role in the pathogenesis of Alzheimer's disease (AD). Amyloid beta peptide (Abeta), the major biomarker of AD, in the presence of copper ions reduces Cu(2+) to Cu(+) and catalyses the formation of H(2)O(2) that subsequently induces radicals through Fenton chemistry. Abeta is also subject to attack by free radicals, where the presence of Cu(2+) in conjunction with H(2)O(2) catalyses oxygenation, primarily at the methionine sulfur atom. This work investigates MCO of Abeta, to gain further insight into the role of oxidative stress in AD. By combining a fluorescence assay with gel electrophoresis to monitor MCO reactions of Abeta (1-28) in the presence and absence of methionine it was determined that methionine can both protect some residues against MCO and promote the oxidation of Tyr(10) specifically. Electrospray ionization mass spectrometric analysis of methionine MCO products indicated the formation of methionine sulfoxide, methionine sulfone and related hydroxylated products. Similar products could be formed from the oxidation of Met(35) of Abeta and may relate to changes in properties of the peptide following MCO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.