Abstract
The oxidation of methionine plays an important role in vivo, during biological conditions of oxidative stress, as well as for protein stability in vitro. Depending on the nature of the oxidizing species, methionine may undergo a two-electron oxidation to methionine sulfoxide or one-electron oxidation to methionine radical cations. Both reaction mechanisms derive catalytic support from neighboring groups, which stabilize electron-deficient reaction centers. In vivo, methionine sulfoxide is subject to reduction by the methionine sulfoxide reductase (Msr) system, suggesting that some methionine sulfoxide residues may only be transiently involved in the deactivation of proteins through reactive oxygen species (ROS). Other methionine sulfoxide residues may accumulate, depending on the accessibility to Msr. Moreover, methionine sulfoxide levels may increase as a result of a lower abundance of active Msr and/or the required cofactors as a consequence of pathologies and biological aging. On the other hand, methionine radical cations will enter predominantly irreversible reaction channels, which ultimately yield carbon-centered and/or peroxyl radicals. These may become starting points for chain reactions of protein oxidation. This review will provide detailed mechanistic schemes for the reactions of various prominent, biologically relevant ROS with methionine and organic model sulfides. Emphasis will be given on the one-electron oxidation pathway, characterizing the physico-chemical parameters, which control this mechanism, and its physiological relevance, specifically for the oxidation and neurotoxicity of the Alzheimer's disease β-amyloid peptide (βAP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.