Abstract
Curdlan is a water-insoluble exopolysaccharide produced by Agrobacterium species under nitrogen starvation. The curdlan production in the ΔmdeA, ΔmetA, ΔmetH, and ΔmetZ mutants of methionine biosynthesis pathway of Agrobacterium sp. CGMCC 11546 were significantly impaired. Fermentation profiles of four mutants showed that the consumption of ammonia and sucrose was impaired. Transcriptome analysis of the ΔmetH and ΔmetZ mutants showed that numerous differentially expressed genes involved in the electron transfer chain (ETC) were significantly down-regulated, suggesting that methionine biosynthesis pathway affected the production of energy ATP during the curdlan biosynthesis. Furthermore, metabolomics analysis of the ΔmetH and ΔmetZ mutants showed that ADP and FAD were significantly accumulated, while acetyl-CoA was diminished, suggesting that the impaired curdlan production in the ΔmetH and ΔmetZ mutants might be caused by the insufficient supply of energy ATP. Finally, the addition of both dibasic sodium succinate as a substrate of FAD recycling and methionine significantly restored the curdlan production of four mutants. In conclusion, methionine biosynthesis pathway plays an important role in curdlan biosynthesis in Agrobacterium sp. CGMCC 11546, which affected the sufficient supply of energy ATP from the ETC during the curdlan biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.