Abstract

Vasculogenic mimicry (VM) is the formation of a blood supply system that confers aggressive and metastatic properties to tumors and correlates with a poor prognosis in cancer patients. Thus, the inhibition of VM is considered an effective approach for cancer treatment, although such a mechanism remains poorly described. In the present study, we examined methionine aminopeptidase-2 (MetAP2), a key factor of angiogenesis, and demonstrated that it is pivotal for VM, using pharmacological and genetic approaches. Fumagillin and TNP-470, angiogenesis inhibitors that target MetAP2, significantly suppressed VM in various human cancer cell lines. We established MetAP2-knockout (KO) human fibrosarcoma HT1080 cells using the CRISPR/Cas9 system and found that VM was attenuated in these cells. Furthermore, re-expression of wild-type MetAP2 restored VM in the MetAP2-KO HT1080 cells, but the substitution of D251, a conserved amino acid in MetAP2, failed to rescue the VM. Collectively, our results demonstrate that MetAP2 is critical for VM in human cancer cells and suggest fumagillin and TNP-470 as potent VM-suppressing agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call