Abstract

Abstract The formation of the insecticide methidathion (S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl phosphorodithioate) complexes with inorganic cation-saturated (Mg2+, Ca2+, Cu2+, and Ni2+) montmorillonites was investigated. The nature and structure of the complexes was determined by X-ray diffraction and infrared spectroscopy. The arrangement of the pesticide molecule in the interlayer space was also considered from ab initio calculations using simpler related molecules. The insecticide methidathion penetrated the interlayer spaces of the homoionic clay samples. The ligand–cation interactions in these complexes depend on the nature and characteristics of the saturating cations. Mechanisms involving water bridges and direct coordination with the exchange cation were proposed for the adsorption of methidathion by inorganic cation-saturated montmorillonites. The effect of the inorganic cations on the sorption of the cationic surfactant tetradecyltrimethylammonium bromide (TDTMA) by montmorillonite was also studied and the subsequent sorption of methidathion in TDTMA+-Montmorillonite determined. Van der Waals bonds constitute the methidathion adsorption mechanism by montmorillonite saturated with TDTMA+. The arrangements of methidathion and of the cationic surfactant molecules in the montmorillonite interlayer space were demostrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.