Abstract

Antimicrobial resistance has been described in all ecosystems, including wildlife. Here we investigated the presence of methicillin-resistant and susceptible staphylococci in both colony-born and wild vervet monkeys (Chlorocebus sabaeus). Through selective isolation, PCR, MALDI-TOF, and whole-genome sequencing, methicillin-resistant and susceptible Staphylococcus spp. isolated from vervet monkeys were characterized. We obtained putatively methicillin-resistant staphylococci from 29 of the 34 nasal samples collected. Strains were identified by MALDI-TOF analysis. Staphylococcus cohnii (n = 15) was the most commonly isolated species, while nine other species were isolated one or two times. PCR analysis indicated that eight [28%] strains were mecA positive. The whole-genome sequencing [WGS] included eight methicillin-resistant strains (S. epidermidis (n = 2), S. cohnii (n = 3), S. arlettae (n = 2) and S. hominis (n = 1)), nine additional S. cohnii strains and two strains that could not be identified by MALDI-TOF, but genetically characterized as one S. cohnii and one S. warneri. Different resistance genes carried by different mobile genetic elements, mainly blaZ (n = 10) and tet(K) (n = 5) were found, while msr(A), cat, fosB, dfrG, erm(C), mph(C) and str were identified in one to three strains. Phylogenetic analysis of the S. cohnii strains based on SNPs indicated four clusters associated with colony born or wild. In addition, one singleton S. cohnii isolated did not form a separate group and clustered within other S. cohnii strains submitted to the NCBI. In this study, we demonstrated the presence of AMR and mobile genetic elements to both colony-born and wild vervet monkeys. We also identified a previously undescribed prevalence of S. cohnii in the nasal flora of these monkeys, which merits further investigation.

Highlights

  • Methicillin-resistant Staphylococcus aureus (MRSA) is a major health problem in humans, while in animals, it remains limited to sporadic cases [1]

  • The wild animals were captured at various sites throughout the Island, while the colony-born vervets were living in closer contact

  • We isolated several methicillin-resistant staphylococcal species as well as susceptible staphylococci growing on selective methicillin-resistant plates. methicillin-resistance could not always be associated with an SCCmec element, while some strains lacking mecA contained parts of an SCCmec element

Read more

Summary

Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a major health problem in humans, while in animals, it remains limited to sporadic cases [1]. Methicillin-resistant S. pseudintermedius is becoming an imminent health problem in dogs [4]. In animals, methicillin-resistance has not been limited to coagulase-positive staphylococci [5,6]. Transfer of the SCCmec element can be mediated by bacteriophages [7], which, based on the zoonotic potential, makes the presence of methicillin-resistance in animal staphylococci a matter of public health concern [2]. Most studies on staphylococci in monkeys were focused on the isolation of MRSA and S. aureus. Two studies reported on antimicrobial resistance, and 13% of the staphylococci from squirrel monkeys proved to be methicillin-resistant [10,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call