Abstract

Recombinant mouse 5,10-methenyltetrahydrofolate synthetase (MTHFS) was expressed in Escherichia coli and shown to co-purify with a chromophore that had a λ max at 320 nm. The chromophore remained bound to MTHFS during extensive dialysis, but dissociated from MTHFS when its substrate, 5-formyltetrahydrofolate, was bound. The chromophore was identified as an oxidized catecholamine by mass spectrometry and absorption spectroscopy. Purified recombinant mouse MTHFS and rabbit liver MTHFS proteins were shown to bind oxidized N-acetyldopamine (NADA) tightly. The addition of NADA to cell culture medium accelerated markedly folate turnover and decreased both folate accumulation and total cellular folate concentrations in MCF-7 cells. Expression of the MTHFS cDNA in MCF-7 cells increased the concentration of NADA required to deplete cellular folate. The results of this study are the first to identify a link between catecholamines and one-carbon metabolism and demonstrate that NADA accelerates folate turnover and impairs cellular folate accumulation in MCF-7 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call