Abstract

The soil microbial communities of a landfill cover substrate, which was treated with landfill gas (100 l CH 4 m −2 d −1) and landfill leachate for 1.5 years, were investigated by phospholipid fatty acid (PLFA), ergosterol and respiratory quinone analyses. The natural 13C depletion of methane was used to assess the activity of methanotrophs and carbon turnover in the soil system. Under methane addition, the soil microbial community was dominated by PLFAs (14:0 and 16:1 isomers) and quinones (ubiquinone-8 and 18-methylene-ubiquinone-8) related to type I methanotrophs, and 18:1 PLFAs contained in type II methanotrophs. While type I methanotrophic PLFAs were 13C depleted, i.e. type I methanotrophs were actively oxidising and assimilating methane, 13C depletion of 18:1 PLFAs was low and inconsistent with their abundance. This, possibly reflects isotopic discrimination, assimilation of carbon derived from type I methanotrophs and a high contribution of non-methanotrophic bacteria to the 18:1 isomers. Landfill leachate irrigation caused the methanotrophic community to shift closer to the soil surface. It also decreased 18:1 PLFAs, while type I methanotrophs were probably stimulated. Gram positive bacteria, but not fungi, were also 13C depleted and consequently involved in the secondary turnover of carbon originating from methanotrophic bacteria. Cy17:0 PLFA was 13C depleted in deep soil layers, indicating anaerobic methane oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call