Abstract
Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensively studied for more than a decade, central mechanistic details remain unresolved. On the basis of an integrated analysis of both environmental metatranscriptome and single-aggregate genome of a highly active AOM enrichment dominated by ANME-2a, we provide evidence for a complete and functioning AOM pathway in ANME-2a. All genes required for performing the seven steps of methanogenesis from CO2 were found present and actively expressed. Meanwhile, genes for energy conservation and electron transportation including those encoding F420H2 dehydrogenase (Fpo), the cytoplasmic and membrane-associated Coenzyme B-Coenzyme M heterodisulfide (CoB-S-SCoM) reductase (HdrABC, HdrDE), cytochrome C and the Rhodobacter nitrogen fixation (Rnf) complex were identified and expressed, whereas genes encoding for hydrogenases were absent. Thus, ANME-2a is likely performing AOM through a complete reversal of methanogenesis from CO2 reduction without involvement of canonical hydrogenase. ANME-2a is demonstrated to possess versatile electron transfer pathways that would provide the organism with more flexibility in substrate utilization and capacity for rapid adjustment to fluctuating environments. This work lays the foundation for understanding the environmental niche differentiation, physiology and evolution of different ANME subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.