Abstract

Bioelectrochemical conversion of CO2 to CH4 is a promising way to increase the calorific value of biogas produced during anaerobic digestion. There are two groups of methanogens enriched in these systems, hydrogenotrophs and acetoclastic methanogens that can also directly accept electrons from an electrode or another microorganism. In this study, a microbial electrolysis cell (MEC) poised at −500 mV (vs. SHE) was operated for biogas upgrading. Methane content in the biogas increased from 71% to >90%, and 8.2% of the CO2 was converted to methane. Methanothrix, an acetoclastic methanogen that can participate in direct electron transfer (DET), and Azonexus, an acetate-oxidizing electrogen, were enriched on the cathode. Transcriptomics revealed that Methanothrix on the cathode were using the CO2 reduction pathway, while Methanothrix in the bulk sludge were using the acetate decarboxylation pathway for production of methane. These results show that stimulation of DET in MEC enhances biogas-upgrading processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call