Abstract
AbstractCrack healing in poly(methyl methacrylate) (PMMA) by methanol treatment at 40°C–60°C has been investigated. It is found that the methanol treatment reduces the glass transition temperature in PMMA. Crack healing only occurs at an operating temperature higher than the effective glass transition temperature. There are two distinctive stages for crack healing based on the recovery of mechanical strength. The first stage corresponds to the progressive healing due to wetting, which has a constant crack closure rate at a given temperature. Immediately following the first stage, the second stage corresponding to diffusion enhances the quality of healing behavior. The surface morphologies obtained during healing and after fracture tests confirm these two stages. By comparing the fracture stress with the fractography, the fracture surface for stage I of crack healing is coplanar to the original crack surface. On the other hand, the original crack surface is destroyed in stage II of crack healing. It occurs in the region incorporating the original healed surface and appears to be like the Virgin fracture surface. It is also found that the tensile fracture stress of PMMA treated by methanol can recover to that of the virgin material. In addition, it is interesting to find that after sustained methanol treatment, the “snake bone” phenomenon on the fracture surface emerges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.