Abstract

Biofuels production from lignocellulosic biomass is hindered by high conversion costs in the generation of high-quality fuels, driving research towards the development of new pathways with less severe conditions, higher yields and higher-quality products. Here, we present a market-responsive biorefinery concept based on methanol as the key intermediate, which generates high-octane gasoline (HOG) and jet fuel blendstocks from biomass. Process models and techno-economic analysis are linked with both fundamental and applied catalyst development research to quantify the impact of catalyst advancements on process economics. By facilitating reincorporation of C4 by-products during dimethyl ether homologation, a Cu-modified beta zeolite catalyst enabled a 38% increase in yield of the HOG product and a 35% reduction in conversion cost compared to the benchmark beta zeolite catalyst. Alternatively, C4 by-products were directed to a synthetic kerosene that met five specifications for a typical jet fuel, with a minor increase in the fuel synthesis cost versus the HOG-only case. The production of high-value fuels from bio-derived methanol requires improvement to become economically viable. Here, process advancements for the production of high-octane gasoline are reported, and the effects that these have on making the process competitive with market rates of fossil fuels are analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call