Abstract
The role of catalase in methanol (MeOH) teratogenesis is unclear. In rodents it both detoxifies reactive oxygen species (ROS) and metabolizes MeOH and its formic acid (FA) metabolite. We treated pregnant mice expressing either high (hCat) or low catalase activity (aCat), or their wild-type (WT) controls, with either MeOH (4g/kg ip) or saline. hCat mice and WTs were similarly susceptible to MeOH-initiated ophthalmic abnormalities and cleft palates. aCat and WT mice appeared resistant, precluding assessment of the developmental impact of catalase deficiency. Catalase activity was respectively increased at least 1.5-fold, and decreased by at least 35%, in hCat and aCat embryos and maternal livers. MeOH and FA pharmacokinetic profiles were similar among hCat, aCat and WT strains. Although the hCat results imply no ROS involvement, embryo culture studies suggest this may be confounded by maternal factors and/or a requirement for higher catalase activity in the hCat mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.