Abstract

A brief review of recent scientific publications concerning the steam reforming of methanol in membrane reactors for the production of pure hydrogen is presented. The use of membrane reactors makes it possible to lower the temperature of this process by 100°C, increase the selectivity of the process, and practically eliminate the effect of catalysts’ carbonization. A substantial advantage of the use of membrane reactors is the possibility for removing a stream of high-purity hydrogen from the permeate zone. First of all, this applies to CO impurities, whose presence is critical for the use of hydrogen in low-temperature fuel cells based on proton-conducting membranes. The use of metallic membranes based on Pd makes it possible to directly use the hydrogen produced in the fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call