Abstract

The behaviour of titania for the photo-reforming of methanol with water at ambient temperature has been examined. It is shown that the reactivity is very poor, compared with metal-loaded catalysts at low methanol levels in solution, but the rate becomes much higher at high methanol levels, such that the difference from metal-loaded samples is much less. The optimum yield is with approximately a 1 : 1 methanol/water solution. The reaction also proceeds well in the gas phase. During all such catalysis, the titania becomes blue, due to light absorption increasing across the range 400-800 nm. However, this does not result in visible range activity for the photo-reforming and is due to the reduction of the material in the presence of light and the formation of anion vacancies and Ti3+ centres. These anion vacancies are only very slowly re-oxidized in air on P25 titania, taking days to recover the original whiteness of the oxide. The performance of anatase, rutile and the mixed phase is compared. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.