Abstract

The possibility of methanol conversion from a methane and water-vapor gas mixture was investigated for a new and highly efficient energy conversion system. Reforming process of methanol to hydrogen can be used for low-temperature thermal energy utilization. Direct methanol production from a methane and water-vapor mixture by spark or glowlike discharges has been achieved experimentally. A high methanol mole fraction of 0.5% has been obtained by both discharges. The effects of applied high voltage time, total pressure, and ratio of gas mixture on the conversion efficiency have been clarified experimentally. The electric energy consumption for methanol production by the spark discharge method is 1/100 that by the glow discharge method. The methanol conversion process has also been analyzed theoretically by considering the dissociation of the initial mixture gas by electrons and 104 elementary reactions. The results suggest that a very short period energy input such as a spark discharge can effectively produce methanol compared with a steady-state discharge such as a glowlike discharge. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 404–417, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.