Abstract

Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw−1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts.

Highlights

  • Methanogenic archaea are strict anaerobes and are typically found in permanently water-logged, anoxic habitats such as wetlands, rice fields, marine sediments, hot springs, and the guts of ruminants and termites (Zinder, 1993; Liu and Whitman, 2008; Brune, 2011)

  • SOIL CHARACTERISTICS The pH in the samples obtained from the vegetation belts and the lateral moraines (Tsomoriri) was neutral to alkaline, which is typical for desert soils, while the samples from the frontal moraines of Nubra Valley were slightly more alkaline

  • All three sites examined in this study (Nubra Valley glaciers, Tsomoriri Plains glaciers, and vegetation belts at Tsomoriri Plains) showed methanogenic potential, though not in all samples and to varying degrees

Read more

Summary

Introduction

Methanogenic archaea are strict anaerobes and are typically found in permanently water-logged, anoxic habitats such as wetlands, rice fields, marine sediments, hot springs, and the guts of ruminants and termites (Zinder, 1993; Liu and Whitman, 2008; Brune, 2011). It has been shown that active methanogens inhabit many aerated, oxic soils including desert soils (Peters and Conrad, 1995; West and Schmidt, 2002; Angel et al, 2012). While the aforementioned anoxic environments typically host a wide variety of methanogens, only the genera Methanosarcina and Methanocella were found in aerated soils, and it has been suggested that these methanogens are universal inhabitants of upland soils (Angel et al, 2012). Thanks to its universal occurrence and conserved sequence, the gene encoding for its α-subunit—the mcrA—is commonly used as a phylogenetic marker gene for methanogens (Lueders et al, 2001; Friedrich, 2005)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call