Abstract

The methanogenic performance and microbial community of the thermophilic anaerobic mono-digestion and co-digestion of food waste and sewage sludge in a high-solid membrane bioreactor were investigated by a continuous experiment. The methane recovery rate of the system reached 98.0% and 89.0% when the substrate was pure food waste and 25% sewage sludge substitution, respectively. Kinetics characterization showed that hydrolysis was the rate-limiting step in both mono-digestion and co-digestion while methanogenic performance and microbial community were significantly affected by feed condition. The dominant archaea for methane generation shifted from Methanothermobacter thermophilus (72.82%) to Methanosarcina thermophila (96.25%) with sewage sludge gradually added from 0% to 100% in the substrate. The relationships between digestion performance, such as the accumulation of soluble proteins in the reactor, and functional microbial groups were also carefully analyzed. Finally, reasonable metabolic pathways for mono-digestion and co-digestion were summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.