Abstract

Acidic peat bog soils produce CH4 and although molecular biological studies have demonstrated the presence of diverse methano-genic populations in them, few studies have sustained methanogenesis by adding the CH4 precursors H2/CO2 or acetate, and few indigenous methanogens have been cultured. McLean Bog is a small (ca. 70 m across), acidic (pH 3.4–4.3) Sphagnum -dominated bog in upstate New York. Although addition of H2/CO2 or 10 mM acetate stimulated methanogenesis in soils from a nearby circumneutral-pH fen, neither of these substrates led to sustained methanogenesis in McLean Bog soil slurries. After a brief period of stimulation by H2/CO2, methanogenesis in McLean Bog soil declined, which could be attributed to buildup of large amounts of acetic acid produced from the H2/CO2 by acetogens. Addition of the antibiotic rifampicin inhibited acetogenesis (carried out by Bacteria) and allowed methanogenesis (carried out by Archaea) to continue. Using rifampicin, we were able to study effects of temperature, pH, and salts on methanogenesis from H2/CO2 in McLean Bog soil samples. The enriched H2/CO2-utilizing methanogens showed an optimum for activity near pH 5, and a temperature optimum near 35°C. Methanogenesis was not stimulated by addition of 10 mM acetate, but it was stimulated by 1 mM acetate, and multiple additions were consumed at increasing rates and nearly stoichiometrically converted to CH4. In conclusion, we have found that both hydrogentrophic and aceticlastic methanogens are present in McLean Bog soils, and that methanogenic activity can be stimulated using H2/CO2 in the presence of rifampicin, or using low concentrations of acetate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call