Abstract

The methanogenic community throughout the gastrointestinal tract (GIT) of pre-weaned calves has not been well studied. The current study firstly investigated the distribution and composition of the methanogenic community in the rumen, ileum, and colon of 3–4 week-old milk-fed dairy calves (n = 4) using 16S rRNA gene clone library analysis. The occurrence of methanogens in the GIT of pre-weaned calves was further validated by using PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and quantitative real-time PCR (qPCR) was applied to quantify the methanogenic community in the rumen, jejunum, ileum, cecum, colon and rectum of 8 3–4 week old animals. Both cloning libraries and PCR-DGGE revealed that phylotypes close to Methanobrevibacter were the main taxon along the GIT in pre-weaned sucking calves. The composition and abundance of methanogens varied significantly among individual animals, suggesting that host conditions may influence the composition of the symbiotic microbiota. Segregation of methanogenic communities throughout the GIT was also observed within individual animals, suggesting possible functional differences among methanogens residing in different GIT regions. This is the first study to analyze methanogenic communities throughout the GIT of milk-fed newborn dairy calves and reveal both their diversity and abundance. The identification of methanogens in the lower GIT of pre-weaned dairy calves warrants further investigation to better define methanogen roles in GIT function and their impact on host metabolism and health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.