Abstract

We have used a novel fibre-optic low-energy electron diffraction (FO-LEED) instrument, capable of low flux measurements that minimise electron beam damage to surface overlayers, to study methanethiolate (CH 3–S–) structural phases formed on Cu{1 1 1} at temperatures between 110 and 300 K. Three structural phases were seen: a (√3 × √3)R30° phase that forms at 110–140 K; a (4 × 4) phase which was observed transiently at 110 K; and a pseudo-{1 0 0} reconstructed phase which forms at room temperature. We discuss these in the context of previous studies of this system, and demonstrate the ability of the FO-LEED instrument to record high-quality LEED patterns and intensity data from a strongly beam-sensitive surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.