Abstract

The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sites and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid (13CH3COOH and CH313COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call