Abstract

Fluid transport through carbon nanotubes have shown remarkable flow properties, with measured flow rates orders of magnitude larger than the expected from standard continuum flow theories. Related studies have indicated that the observed high flow rates were driven by the extreme smoothness of the cylindrical nanotubes used in the experiments. In this work, we consider several types of nanochannels far from the cylindrical geometries. Using a combination of simulation techniques, such as molecular dynamics and the lattice Boltzmann method, we study the flow behavior under tortuous and rough channels, which are of fundamental relevance either for optimizing carbon nanotubes for nanofiltering applications, as well as for characterizing nanoporous organic media. We show that, although both features have a detrimental effect on flow rates, when nanochannels have both roughness and tortuosity simultaneously, shorter length-scales associated with surface roughness have a deeper impact, dominating the overall pr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.