Abstract

The adsorbed natural gas (ANG) concept uses a high-capacity adsorbent packed in the fuel tank allowing high-density fuel storage at a reduced pressure (30–60 bar). One major problem of ANG is during a fast tank filling: generation of heat of adsorption is not released fast, increasing the temperature of the adsorbent and reducing its storage capacity. In this work, we have evaluated the temperature evolution of a storage tank packed with HKUST-1 and subjected to a fast filling of methane under different external heat transfer conditions. When the tank is operated in adiabatic regime, the sudden temperature excursion damaged the HKUST-1 adsorbent with a reduction of 10% of its surface area. To enhance heat transfer and protect the integrity of the adsorbent, the MOF was packed inside 3D printed metal lattices with different lengths. The experiments showed a significant enhancement of the heat transfer which can be particularly beneficial for larger storage tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call