Abstract

The Haima cold seeps are active cold seep areas that were recently discovered on the northwestern slope of the South China Sea (SCS). Three piston cores (CL30, CL44, and CL47) were collected within an area characterized by bottom simulating reflectors to the west of Haima cold seeps. Porewater profiles of the three cores exhibit typical kink-type feature, which is attributed to elevated methane flux (CL30) and bubble irrigation (CL44 and CL47). By simulating the porewater profiles of SO42-, CH4, PO43-, Ca2+, Mg2+, and dissolved inorganic carbon (DIC) in CL44 and CL47 using a steady-state reaction-transport model, we estimated that the dissolved SO42- was predominantly consumed by anaerobic oxidation of methane (AOM) at rates of 74.3 mmol m−2 yr−1 in CL44 and 85.0 mmol m−2 yr−1 in CL47. The relatively high AOM rates were sustained by free gas dissolution rather than local methanogenesis. Based on the diffusive Ba2+ fluxes and the excess barium contents in the sediments slightly above the current SMTZ, we estimated that methane fluxes at core CL44 and CL47 have persisted for ca. 3 kyr and 0.8-1.6 kyr, respectively. The non-steady-state modeling for CL30 predicted that a recent increase in upward dissolved methane flux was initiated ca. 85 yr ago. However, the required time for the formation of the barium front above the SMTZ at this core is much longer (ca. 2.2-4.2 kyr), which suggests that the depth of SMTZ possibly has fluctuated due to episodic changes in methane flux. Furthermore, using the model-derived fractions of different DIC sources and the δ13CDIC mass balance calculation, we estimated that the δ13C values of the external methane in cores CL30, CL44, and CL47 are -74.1‰, -75.4‰, and -66.7‰, respectively, indicating the microbial origin of methane. Our results suggest that methane seepage in the broader area surrounding the Haima cold seeps probably has persisted at least hundreds to thousands of years with changing methane fluxes.

Highlights

  • Methane in marine sediments as dissolved gas in porewater or free gas depending on its in situ solubility is a significant component of the global carbon cycle

  • SO42- concentrations at sites CL44 and CL47 displayed near-seawater values in the upper ~2 mbsf above the kinks and decreased sharply down to the sulfate-methane transition zone (SMTZ) located at ~7 and ~6.8 mbsf, respectively (Figures 3 and 4)

  • Deep-water turbidity current channel and fan systems are well developed in the study region [67], the homogeneous grain size distributions in cores CL44 and CL47 reveal that the sediment above the kinks of sulfate was not impacted by turbidites, which are typically characterized by upward grading in grain size

Read more

Summary

Introduction

Methane in marine sediments as dissolved gas in porewater or free gas (bubbles) depending on its in situ solubility is a significant component of the global carbon cycle. Methane could exist in an ice-like solid as gas hydrate if the in situ gas hydrate solubility concentration is oversaturated at suitable pressure-temperature conditions [1]. The base of the gas hydrate reservoir in marine sediments is present as a characteristic discontinuity known as a bottom-simulating reflector (BSR), which results from the occurrence of free gas beneath the gas hydrate stability zone (GHSZ) [2]. Reaction methane is converted to dissolved inorganic carbon. AOM largely prevents dissolved methane from entering water column and plays a significant role in marine carbon cycling

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call