Abstract

We present a method to identify and quantify methane using a hydrophobic ionic liquid (IL)–electrified metal electrode interface by electrochemical impedance spectroscopy. We investigated the mechanisms of the responses of the IL-electrified electrode interface to the exposure of methane and other interfering gases (H2, C6H12, SO2, NO, NO2, CO2, O2, H2O). Our results show that at low frequency the IL-electrified electrode interface shows a predominantly capacitive response. The IL-electrode double layer (EDL) was found to be the primary response layer while the transition zone and bulk region of the IL-electrode interface contribute little to the overall signal change. For recognition and quantification of methane using the Langmuir adsorption model and measurement of differential capacitance change, an optimum EDL interface structure was found to form at a specific DC bias potential. The cumulative results shown in this work suggest that an ideal IL-electrode interface can be formed by varying IL structure and applied DC bias electrode potential for a specific analyte and that the semi-ordered structure of IL-electrified interface can act as a recognition element for the sensitive and selective adsorption and detection of gaseous molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.