Abstract

We studied the response of methane production and oxidation potentials in a minerotrophic and an ombrotrophic mire to water table fluctuations. In profiles where water table had not varied, the water-saturated layers showed significant potentials while the unsaturated layers did not. The production potentials in the saturated layers below water level ranged from 0.1 to 2.4 μg CH 4 h −1 (g d.w.) − 1 and oxidation potentials (first order reaction rate constants) between −0.010 and −0.120 h −1 (g d.w.) − 1. In profiles with constant water level, the maximal production potential occurred 20 cm and maximal oxidation potential 10 cm below water level. When water table varied only a little, production potentials slightly increased towards the autumn. After a water level draw-down, in the profiles from the dry microsites, production and oxidation potentials were detected in layers that had been unsaturated up to 6 weeks. The maximal oxidation zone was shifted downwards during low water periods. In a wet microsite, a 2 week period of unsaturation eliminated the production potentials and decreased the oxidation potentials. After a rise in the water level, the potentials were reactivated more rapidly in the wet than in the dry microsites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.