Abstract

Restrained by uncontrollable dehydrogenation process, the target products of methane direct conversion would suffer from an inevitable overoxidation, which is deemed as one of the most challenging issues in catalysis. Herein, based on the concept of a hydrogen bonding trap, we proposed a novel concept to modulate the methane conversion pathway to hinder the overoxidation of target products. Taking boron nitride as a proof-of-concept model, for the first time it is found that the designed N-H bonds can work as a hydrogen bonding trap to attract electrons. Benefitting from this property, the N-H bonds on the BN surface rather than C-H bonds in formaldehyde prefer to cleave, greatly suppressing the continuous dehydrogenation process. More importantly, formaldehyde will combine with the released protons, which leads to a proton rebound process to regenerate methanol. As a result, BN shows a high methane conversion rate (8.5 %) and nearly 100 % product selectivity to oxygenates under atmospheric pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call