Abstract

Methane concentrations and stable carbon isotope ratios of water samples from the East Pacific Rise (EPR) at 21°S and the Arabian Sea (24°N, 65°E) have been determined. EPR surface water is in equilibrium (ca. 50 nl/L and -50‰<δ(13)CH4<-46‰) with atmospheric methane. Deep "background" water has the signature of the remaining fraction of atmospheric methane partially oxidized in the water column by bacteria. Bottom near, hydrothermally influenced vent methane (>100nl/L and -30‰<δ(13)CH4<-22‰) is detectable only close to the seep site. There is no input of hydrothermal methane into the atmosphere. EPR water is considered to be rather a sink than a source of atmospheric methane. Surface waters of the Arabian Sea are enriched in methane relative to the atmosphere (source for atmospheric methane). Carbon isotope ratios point to a bacterial origin of methane (δ(13)CH4<-55‰) that is generated in the surface waters. Concentration changes and variations of carbon isotope ratios also suggest that methane seeping from the sea floor sediments of the Arabian Sea is oxidized by bacterial activity and does not reach the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.