Abstract

AbstractTo enhance hydrate formation kinetics, we presented a novel spiral‐agitated reactor, where hydrates were synthetized in pure water systems, and fast hydrate kinetics was observed under extremely mild conditions. Hydrates can nucleate within 4 min under 3.5 MPa and 275.15 K at a rotating speed of 60 rpm, and large water‐to‐hydrate conversion (>85%) was obtained at a moderate condition of 4.85 MPa, 275.15 K, and 30 rpm with an average methane uptake of 139.78 V/V, demonstrating that pure water systems are feasible for hydrate‐based solidified natural gas (SNG) technology. Numerical simulations of flow fields inner the reactor were carried out, and four mechanisms behind the excellent promotion were proposed, dual‐agitation, two‐way convection, interfacial impact and micro bubbles, which significantly improve mass transfer, giving rise to fast hydrate nucleation and growth kinetics. These findings suggest extraordinary performance of spiral agitation, and this may pave way on the industrial application of hydrate‐based SNG technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call