Abstract

Methane hydrate as a clean energy source has attracted worldwide attention. Yet, thermodynamic evolution of methane hydrate-bearing deposits during long depressurization are still unclear. In this study, five methane yields (1.17, 0.77, 0.41, 0.21 and 0.13 Ls/min) for exploitation were conducted to simulate long depressurization of thousands of minutes. The rates of both depressurization and hydrate dissociation are linearly enhanced by increasing methane yield. Icing is always observed when the pressure reaches approximately 2.4 MPa unless the hydrate dissociation already finished. The accelerating effect of icing on hydrate dissociation can be strengthened by high methane yields. Thermodynamic responses at different exploitation stages are different because of the varied combinations of some non-equilibrium processes including gas expansion, hydrate dissociation, icing and melting as well as heat transfer. In this study, there are four thermodynamic non-equilibrium phenomena, respectively are gas expansion production, non-isothermal heat transfer, hydrate stationary dissociation and ice isothermal melting. The thermodynamic controlling mechanism and influencing factors of different exploitation stages are analyzed qualitatively or quantitatively, which reveals the temperature response of methane hydrate exploitation during long depressurization process. These results are helpful for understanding complex coupling mechanism of phase change and heat and mass transfer in methane hydrate exploitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call