Abstract

Mesoporous Ce 0.8Sm 0.2O 1.9 (SDC) oxide with high surface area was prepared by a novel glycine-nitrate combustion process with in situ created nickel oxide as template, and applied as the catalytic layer for methane-fueled solid-oxide fuel cells (SOFCs) operated at reduced temperatures. The weight ratio of nickel oxide to SDC in the synthesis process was found to have significant effect on both the crystallite size and the textural properties of the resulted SDC powder. In particular, when it was at 9, the thermally stable and well-crystallized SDC powder showed a mesoporous structure with narrow pore-size distribution, high surface area (77 m 2 g −1) and large pore volume (∼0.2276 cm 3 g −1), even after the calcination at 700 °C for 3 h. The mesoporous SDC was found to favor free gas diffusion with no gas diffusion polarization occurred even at high current density both for hydrogen and methane fuels. The SOFC with Ru impregnated mesoporous SDC catalytic layer displayed promising performance with a peak power density of ∼462 mW cm −2 at 650 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.